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ABSTRACT 

In this article we consider two classes of static defensive resource allocation problems, these 
are, the static "target-value based" weapon target allocation and the static "asset-value based" 
weapon allocation problem. It is shov^m that the target-value based problem can be recast, 
(using indicator functions), into an instantiation of the so-called transportation problem. The 
transportation problem can be solved by numerous polynomial-time algorithms and has 
received considerable attention in the literature. We also consider the so-called "asset-based" 
weapon target allocation problem. This problem is shown to be somewhat more difficult than 
the target value based problem. A simulation study is presented for the target-value allocation 
problem, with emphasis upon sensitivity to uncertain target-elimination probabilities. 

RELEASE LIMITATION 

Approved for public release 

f04 ^12-/^^0 



Publislted by 

DSTO Systems Sciences Laboratory 
PO Box 1500 
Edinburgh Sou th Australia 5111  Australia 

Telephone: (08)82595555 
Fax: (08)8259 6567 

© Commomoealth of Australia 2004 
AR-013-067 
March 2004 

APPROVED FOR PUBLIC RELEASE 



On The Character and Complexity of Certain 
Defensive Resource Allocation Problems 

Executive Summary 

The primary aims of this report are to introduce and explain, certain technical issues 
concerning defensive resource allocation problems. However, the core aim is to revisit 
the so-called weapon target allocation problem and consider its impUcations in the 
modern context of a networked defence. It is clear that the foremost issue arising from 
a networked defence, in our context, is that the number and diversity of available 
defensive resources will significantly increase. It is therefore timely to consider both 
the character and complexity of defensive resource algorithms. Quite apart from any 
particular context, optimal defensive resource allocation has two main classes of 
applications, these are, 1) the online scenario, that is, committing defensive resources in 
real time, during real engagements and 2) the offline scenario, that is, using allocation 
algorithms to simulate and model the effectiveness of defensive resources against a 
given threat scenario. The importance of the online scenario is immediate, however, the 
offline scenario also has significant value and can perceivably be used to aide 
acquisition, or to estimate a measure of preparedness. Further, a capability to consider 
offline scenarios will most likely enhance the development of online algorithms. This 
claim follows naturally from the inherent complexity in defensive resource allocation 
problems, which often necessitate imavoidable approximation for online applications. 

In this report we begin with a Hterature survey, starting from approximately 1950. 
Various models with various objectives are discussed. We also consider the diversity of 
approaches taken to solve defensive resource allocation problems. 

For a particular example, we consider the so-called static target-value based problem. 
A special case of this problem is shown to be amenable to a linear programming 
formulation and can be readily solved with the simplex algorithm. This algorithm is a 
standard algorithm in linear programming and is used to solve certain constrained 
optimisation problems. The special case we consider is indeed useful, as it provides a 
convenient means of studying weapon target allocation and potentially gaining insight 
in to more complex scenarios. Further, this special case is unique, in that despite being 
cast as a relaxed linear program, with decision variables ranging in the interval [0,1], its 
natural solutions are guaranteed to take integer values in the set {0,1}. Consequently, 
sensitivity analysis is also possible using this formulation. 

A computer simulation is provided, showing the cost of uncertainty in target- 
elimination probabiHties. To make this report as self contained as possible, a proof of 
the fundamental Theorem of linear programming is provided in the Appendix. 
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1    Introduction 

A current trend, if not revolution in military affairs, is to recast traditional platform- 
centric notions of defence, into a form of networked defence [1,26,27]. This shift in thinking 
has many far reaching implications. It is certainly true, that the emerging questions 
concerning implementation of networked defence are highly nontrivial. Typically, these 
questions of implementation have concerned mainstream areas in Electriccil Engineering, 
such as Communications, RADAR, Tracking and Fusion etc. For example, how does one 
manage defence information on a complex and often heterogeneous asynchronous time- 

varying network ? 

Currently there is much emphasis placed upon surveillance and situation awareness 
aspects of networked defence, usually with the objective of constructing a battle-space 
picture, however, a battle-space picture alone offers no defence ! In this report we turn 
our attention to the action of defence, in particular, the optimal allocation of defensive re- 
sources. Put briefly, we consider questions such as how best to commit defensive resources 
when in a situation of imminent and real threat. A distinction we make is as follows; 
we are not primarily concerned with the above technical issues pertaining to a network, 
rather, we think of ourselves as consumers of what a network provides and subsequently 
act on this information with the aim to best deploy defensive resources. It is worth not- 
ing, that here the word best could have varied meanings, such as preferentially defending 
a collection of assets, or minimising the survival of a threat. 

The optimal allocation of defensive resources against imminent threats has a long 
and varied history, however, the rough beginning of this research may be taken as the 
1950s. Indeed, in the 1950s and 1960s, the Operations Research Journal published many 
papers on defensive resource allocation. Some of this foundation literature appears to have 
been motivated by the then Cold War threat of Intercontinental Ballistic Missile exchange 
between the former Soviet Union and the United States of America. This perceived threat 
is an enduring one and arguably one of the most controversial in the history of defence 
science. One indication of levels of concern over missile defence, is that in the United 
States alone, this problem received more defence funding than any other defence research 
program in history. 

Considering the current trends towards network centric ideas in defence, it is indeed 
timely to revisit the area of optimal defensive resource allocation. A networked defence 
potentially augments the number and variety of available defensive resources and indeed 
changes the very nature of how defensive resources might be committed. To introduce 
some foundation in defensive resource allocation, this report begins with an overview of the 
general problem area and provides a literature survey identifying significant contributions. 
We restrict our attention to two main static model classes, these are, the target-value 
based allocation problem and the asset-value based allocation problem. It is shown, that 
the target-value based problem can be recast as a particular instantiation of the well known 
transportation problem and subsequently solved by a linear programming algorithm. A 
basic problem that arises in this recourse to linear programming, is our decision variables 
are necessarily integer-valued, typically binary, where 0 might denote not committing a 
resource and 1 denotes committing a resource. Put simply, if we relsix this requirement, 
we allow continuous range decisions in [0,1]. Immediately this approximation manifests 
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a serious problem. Suppose a solution is computed to commit 0.765 of a resource. To 
address such problems, one might make use of either of the two main integer programming 
techniques, cutting plane methods ( [78]) or branch and bound [48]. However, the target- 
value problem admits a useful special case when the number of targets is equal to the 
number of defensive resources and each target must be addressed. In this case the matrix 
in the constraint set is unimodular. What this means, is that all basic solutions are 
naturally integer-valued. The simplex algorithm can be used to solve this problem. The 
value in considering this special case, is it provides a convenient means of gaining insight in 
to weapon target allocation problems, which otherwise are very difficult to solve. Indeed, 
there is only one exact solution to the static weapon target allocation problem due to den 
Broeder et al [22]. Note however. Den Broeder's solution considers only the very restrictive 
case of a single weapon cljiss. 

This article is organised as follows. In section 2 we present a brief literature survey, 
covering the main contributions to defensive resource allocation problems and the diversity 
of methods proposed to obtain solutions. In section 3 we concentrate on some specific 
resource allocation problems, in particular the so called target-value based weapon target 
allocation problem. This particular problem is explained in some detail and is shown to be 
amenable to linear programming, under certain assumptions. We also discuss the so called 
asset-based weapon target allocation problem in this section. To conclude section 3, we 
consider the core issue of algorithm complexity arising from resource allocation problems, 
all of which are at least non-deterministic-polynomial-time hard. In section 4 we consider 
the issue of robustness of target-value based algorithms. A computer simulation is given, 
showing the consequences of uncertainty in target-elimination probabilities. In section 
5 we give a conclusion, placing emphasis on the customer relevance (ADF), of defensive 
resource allocation. Finally, in section 6, we propose future research in defensive resource 
allocation. 

2    Literature Survey 

Defensive resource allocation is a vast area, with numerous particular scenarios and 
numerous techniques for computing solutions. It is impossible to comprehensively survey 
this work in a brief technical report, so we first give essentially a guide to the literature, 
identifying key elements etc. We then identify a particular set of modelling techniques 
which have been frequently proposed to solve allocation problems. 

2.1    General Overview 

As is often the case with a significant body of literature, one can usually identify a small 
set of key contributions, upon which many subsequent contributions were based. Most of 
the early contributions to defensive resource allocation appeared in the journal Operations 
Research (1950s, 1960s). This collection of literature is almost entirely restricted to the 
static class of problems. In defensive resource allocation, there are two general classes 
of models studied, these are, 1) the so called static problems and 2) dynamic problems, 
where exchanges are modelled over sequential stages in time. For a static problem, one 
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essentially considers a defence action as a single exchange. These problems embody no 
explicit notion of time, that is, one measures a threat, one devises a response and one com- 
mits that response. Although time does not appear explicitly in static problems, the time 
required to compute solutions is of course a primary issue. This class of problems holds an 
important place in defensive resource allocation, as under many common circumstances, 
the sequential assignment of resources against targets might just not be an option. Fur- 
ther, while static problems might seem simplistic, or incomplete, they are highly relevant. 
Studying these problems often enhances the development of their temporal counterparts. 
Another important division in the literature is the distinction between offensive resource 
allocation and defensive resource allocation. It is interesting to note that early foundation 
literature consists mainly of the offensive scenario, whereas most of the more recent literat- 
ure is cast for the defensive scenario. One also finds literature simultaneously considering 
both scenarios, this is typical for game theoretic analyses of resource allocation. This is 
sometimes called the attack-defence game. 

A suitable starting point for the static problem literature is arguably the paper by 
Alan Manne [51]. Manne's paper further developed a model proposed by Merrel Flood 
and suggested some properties of the model. The model discussed in Manne's article is 
a deterministic static weapon target allocation model which has since been considered by 
many different approaches. 

Three substantial surveys of the contributions to weapon target allocation problems 
have appeared in the literature, these are, 1) Matlin [53], 2) Eckler and Burr [23] and 
3) Metier and Preston [56]. These reports present extensive, yet different in character 
surveys. In Matlin's article, the emphasis is upon optimal allocation for the purpose 
of offence. He collects a number of articles and gives a brief discussion of them, he also 
proposes a classification scheme of algorithms for defensive resource allocation. The report 
due to Eckler and Burr is substantial and detailed. Its emphasis is upon defence, rather 
than offence. This report is not limited to allocation problems, but considers other related 
technical issues, such as models for fractional damage etc. The report by Mettler and 
Preston is restricted to the asset-based defence problem, a varied set of algorithms for 
asset-beised defence Eire described in some detail. A feature common to all three of these 
surveys is that defensive resource allocation is restricted to static scenarios. 

2.2    Mathematical Models and Techniques 

In most of the problems concerning defensive resource allocation, one is confronted 
with constrained optimisation problems. Loosely, optimisation has two broad classes, 
calculus based techniques and enumerative based techniques. Naturally the calculus based 
techniques rely on a classical notion of a gradient (with some exceptions). However, all 
defensive resource allocation problems admit only integer-valued solutions. This means 
that to use calculus based methods, one must first relax the primary problem, assuming 
this approximation does not render the subsequent solution completely meaningless with 
respect to the original problem. Enumerative solutions impose no restrictions such as 
differentiability or linearity etc. 

1. Dynamic Programming 
Dynamic programming methods have been applied to the defensive resource alloca- 
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tion [4,16]. In this report we consider a special case of the target-value based weapon 
target allocation problem, which can be cast as a linear programming problem. This 
class of problem is closely related to the so called {0,l}-Knapsack problem, which 
can also be solved by dynamic programming, see [76]. While the dynamic program- 
ming method offers some scope for resource allocation problems, it quickly become 
unsuitable for a large number of states, or stages in the sequential case. This issue 
is loosely referred to as Bellman's curse of dimensionality. Dynamic programming is 
discussed in [3,9,10,13]. A recent historical article is given in [21] 

2. Lagrange Multiplier Methods 
Lagrange multiplier methods have been applied to the defensive resource allocation 
[24,67]. In particular, an extensive account of Lagrange Multiplier methods applied 
to weapon target allocation is given in the research monograph [19]. Lagrangian 
relaxation is also considered in the Thesis of Hosein [40], however, these methods 
make use of derivatives, which will not always exist for many resource allocation 
problems. Hence, a key problem here, is that Lagrange multiplier methods may not 
always lead to the true optimal solution. 

3. Game Theory 

Game Theoretic methods have been applied to defensive resource allocation prob- 
lems in [18]. See also the recent article on missile defence [63]. Quite distinct from 
the mainstream of defensive resource allocation, game theory considers the alloca- 
tion objectives from both sides simultaneously, assuming a two-player scenario as is 
typical for warfare. A core problem with game theory, in this setting, is one assumes 
knowledge of strategy spaces for both competing sides, which in military operations 
is rarely the case. Two alternatives to this issue are, 1) develop a scheme robust to 
uncertainty (ie risk sensitive or robust estimation), or 2) strive to learn the strategy 
space of an adversary during the process of the game. Seminal contributions in game 
theory are [43,80], see also [14]. 

4. Integer Programming 

Integer programming provides a natural framework for {0,l} allocation problems. 
However, most of the standard integer programming methods are determinsitic. Re- 
cently stochastic methods have been considered in the article [60]. One important 
drawback with integer programming, is that it is generally known not to be robust. 
Further, in most cases it is not possible to apply sensitivity analysis. Excellent 
treatments of integer programming are given in [32,78] 

5. Neiu-al Networks 

Neural Network methods have been applied to defensive resource allocation prob- 
lems in [77]. Neural Networks have a long history, which some authors date from 
the McCulloch and Pitts, 1943, [54]. This early work was motivated a need to model 
computational processes, as they are believed to happen in the human brain. It 
was understood that processing time was not the core issue, rather, the organisation 
of processing. Neural Networks have enjoyed many successful applications, particu- 
larly in pattern classification and pattern recognition. However, computational time, 
or training time, remains a problematic issue with Neural Networks. This limita- 
tion makes this approach unsuitable for defensive resource allocation. A reasonable 
review of Neural Networks can be found in [17]. 
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6. Genetic Algorithms 
Genetic algorithms have been applied to defensive resource allocation problems 
in [31,59]. The optimisation procedure referred to as a Genetic Algorithm was 
introduced by Holland in 1975 [38]. Genetic algorithms are guided random searches 
and in this sense are related to simulated annealing [34,44,69]. The random nature 
of the mechanism of genetic algorithms makes it difficult in general to analyse their 
performance. One impressive feature of genetic algorithms, is their ability to escape 
local optima. An excellent survey of genetic algorithms is given in the article [75]. 

7. Neuro-Dynamic Programming 
Neuro-dynamic programming (NDP) has been applied to defensive resource alloca- 
tion problems in the recent article [6]. Neuro-dynamic programming (also referred 
to as reinforcement learning), proposes an approximation to dynamic programming 
by approximating the reward function. A key issue, is precisely how to approximate 
this function. Comprehensive treatments of NDP are given in [8,74], see also the 
review/summary articles [12]. 

2.3    Summary 

It is clear that the literature in defensive resource allocation has developed unevenly. 
The foundation static models, offensive or defensive, target-value based or asset-value 
based, represent the beginnings of this literature, starting with Manne's article and fol- 
lowed by the articles listed and reviewed in [23,53,56]. Following this foundation, the 
next most significant contribution was the superb PhD Thesis of Hosein. Hosein's Thesis 
marks, in some sense, the introduction of a time parameter and therefore, the beginning 
of dynamic resource allocation problems. Numerous important theoretical results were 
established in this Thesis. Separate from Hosein's Thesis there have been numerous less 
standard approaches to weapon target allocation, such as genetic algorithms, simulated 
annealing and neural networks. Some recent literature, see [6,60,63,77], would suggest 
that research in defensive resource allocation still remains a very active area. 

Finally, the reader should be aware that research in defensive resource allocation, such 
as the US Missile Defence program, is in most cases highly classified research and so is not 
reported in the open literature. It is also interesting to note that the foundation literature 
in the journal Operations Research was drawn substantially from companies supporting 
US defence, such as: The General Electric Company, The Rand Corporation, The Lambda 
Corporation and the Mitre Corporation, to name just a few. It is perhaps not surprising 
then, that the literature in defensive resource allocation might well be described as scant. 

3    Static Model Classes 

In this article we consider two model classes for static weapon target allocation. In 
the first class we consider the so called target-value based models. In these models one 
attributes a numerical value to attacking targets and it is ultimately the ranking (threat 
evaluation), of this value, combined with the defensive resource target-elimination prob- 
abilities which determine the optimal defence. 
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In the second model class, we consider the so called asset-value based models. These 
models represent what is usually referred to as "preferential defence", that is, one chooses 
to defend a collection of assets each ranked according to a given value. These models are 
far more demanding to solve than target-value based models, however, the motivation to 
consider them is primarily that defence effectiveness can be substantially improved when 
the information required by this approach, (situation awareness), is available. It is clear 
that this class of model has a natural application in a networked defence. 

3.1    Target-Value Based Deterministic Allocation 

All probabilities are defined on the fixed space (fi, T, P). 

3.1.1    The Standard Model 

Suppose the Defence, located at some fixed point, has 1,2,..., M defensive resources 
(possibly weapons of some description). Suppose an Attacker has fired 1,2,..., AT weapons, 
each aimed directly at the point location of the Defence. In the sequel we refer to the 
attackers weapons as targets. We denote by A^ij), the event that the defensive resource 
j e {1,2,..., M} eliminates target i G {l,2,...,N}. 
Write 

P(i,j) = P{^(i,j)) = ^'(Target i is eliminated by resource j). (1) 

We refer to the probabilities p^ij) as target-elimination probabilities. These probabilities 
are usually cissumed as known. 

What we would like, is to construct an objective function representing the average 
survival of the collective threat, or the target set 1,2,..., A^, given a particular alloca- 
tion of defensive resources, and define this average survival in terms of the elimination- 
probabilities of the available responses. To this end, we will need to consider target- 
elimination probabilities of allocations and as is standard in the literature. The following 
independence is assumed 

fi = P{{n\ ^(.-,1)) n (fi \ A(i.2)) n • • • n (fi \ ^(.-M))) , 

= Pi^ \ ^(.M))^(fi \ ^(.-.2) ■■■P{^\ ^(.-.M))- ^^^ 

To label any particular allocation, we introduce binary decision variables and a corres- 
ponding action space. 
Write 

A  11    Allocate Resource j to Target i, 

'^^'■^^ ~ \0    Ignore Taget i. (^) 

Given we consider N targets and M defensive resources, the action space for this problem 
is the binary space 

B = {0,1} X {0,1} X • • • {0,1} = {0,1}^"^. (4) 
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Further, a given response, or feasible solution, can be thought of as a matrix in the form: 

a:(i,i)     a:(i,2)     2(1,3)    •••     X(i,M) 

= (iV,l)    '^{N,2)   a;(jv,3)    ...    a;(jv,M). 

(5) 

Each of the attackers targets are assigned a value Vi 6 (0,1]. These parameters are 
assumed given by some form of threat evaluation, for example 

Vi = /(estimated time of arrival of target i), (6) 

Vi = 5 (size/yield of target i), (7) 

Vj = ^(range of target i). (8) 

REMARK 1 The scalar quantities Vi cannot be predicted in advance and are therefore 
completely random. It is difficult however to propose a suitable distribution for these 
numbers, so they are modelled simply as parameters, who's value is determined at the 
time of threat. 

Finally, to construct an objective function, we consider the so called leakage probabilities, 

M 

11(1 - P(.J))"C-) = (1 - Pii,!)^-'^  X (1 - Pii,2)r-^^ X ... (1 - p^i,M)r^-^^ ■ (9) 

This probability represents the survival of target i, given the shown allocation. It is now 
clear that our objective should have the form: 

N M 

p=T.^i{Ili^-pijr''''}- (10) 
»=i       i=i 

Here F : B -> R. Further, it is clear that F is bounded below by zero and is bounded 

above by Y,iLi «t- 

REMARK 2 To interpret the function at (10), it is perhaps useful to represent it in the 
form 

N 

F = V vi^i ([x{ij)]i<i<N; \P(i,j)]i<i<N ) ■ (11) 
i^ ^ l<i<M 1<3<M' 

The scalar quantity F, is a particular average survivability of the collective threat 
{vi,V2,. ■., Viv}) given a particular allocation x = [a^^-,)]i<i<iv • 

'    i<i<Af 

The standard constraint used in the minimisation of F, is 

N 

*(i) = E=^(»-.i) = l'  3 e {1,2,...,M}. (12) 
t=i 
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This constraint imposes two demands, firstly, it ensures that each of the M resources is 
committed and secondly, it ensures that each resource can be allocated only once. 
In summary, the constrained optimisation we must solve is: 
Compute 

E«'{n 
t=i    j=i 

^*=^^^"^ = ™is{E«.{n(i -p(.-.i)r<''>}} (13) 

Subject to 

*(i) = E *(i.i) = 1'        i = 1,2,..., M. (14) 
iv 

t=i 

REMARK 3 The constrained optimisation problem defined by equations (13) and (14) 
presents some immediate difficulties. Firstly, the number of feasible solutions is clearly 
N^. This complexity is indeed an issue in networked defence, as the number of available 
resources (M), is most likely to be augmented by a network. For example, suppose N -^ 
and M = 10, then the number of feasible solutions is 9765625 f» 10 x 10^. A second and 
more problematic property of this problem, is the objective function F, with domain B, is 
clearly not convex. It is also clear that the function F is nonlinear. 

An inescapable feature of defensive resource allocation problems, as is evident in target- 
valued allocation problem just described, is that they are inherently integer-valued, that 
is, it makes no sense to commit any fraction of a defensive resource. A common approach 
to address this difficulty is relaxation, here one allows the decision variables xiij\ G {O, l} 
to assume a continuous range in the compact set [0,1]. To consider this approach, we first 
check the convexity of the relaxed form of the function F, the motivation to do so is 
fundamental to optimisation, for example, 

"the great watershed in optimisation isn't between linearity and nonlinearity, 
but convexity and non-convexity" 

R. Rockafellar, SIAM Review 1993. 
Establishing the convexity of F, on [0,1]^^^, will at least ensure the existence of an 
optimal solution. 

LEMMA 1 (CONVEXITY OF THE RELAXED OBJECTIVE FUNCTION) Suppose that each of 
the N X M decision variables i(,-jj are not integer-valued, rather, suppose these vari- 

ables each take values in the compact set [0,1].   Then the function F : [0,1]^^*^ -^ B, 
defined at (13) is a convex function. 

Proof of Lemma 1 

The objective function F, defined at (13), is a sum of i = 1,2,..., iV functions. Consider 
a sum of convex functions 5i, 52, • • •, fffc, where for each 5 : R" -> R, then, for two vectors 
aj, y G R" and A G [0,1]. We note that 

k k k 

Y^QiiXx + (1 - A)y) < \Y,9i{^) + (1 - >^)Y.9i{^)- (15) 
i=i i=i i=i 
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Since a sum of convex functions is again convex, we need only check convexity for an i-th 
function in the sum defining F. Without loss of generality we set Vi = 1 and write 

M 
A 9iix)^ll{l-p,jr'^. (16) 

Suppose a,/3 G M". We define a functional ^ : [0,1]^ -^ R, 

^^f\. (17) 
5(«) 

Since g is strictly positive then ^ is well defined. Further, the functional ^ is convex, to 
see this note that 

^^<A<^+(1-A),        AG[0,1]. (18) 

Note that 

Xgifi) + (1 - A)5(a) = g{ct) {X<f> + (1 - A)). (19) 

Similarly, 

Af 

5(A^+(1-A)a) = n(l-Ki)''^^^'"''"^ 
3=1 

M 

Using the calculation immediately above and the convexity of ^, we see that 

g{Xfi + {l-X)ci)=g{a)cl>^ 

<5(a)(A^+(l-A)) 

<A,(a)^ + (l-A),(a) ^^'^ 

<Xg{fi) + {l-X)g{a). 

D 

REMARK 4 Minimising the relaxed form of the function given at (10) is a convex pro- 
gramming problem, that is, optimising a convex function, over a convex set. 

(20) 
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3.1.2    A Uniform Defensive Resource Class Solution 

One vivid indicator of the complexity of defensive resource allocation, is that there 
are very few exact solutions. However, one special case which admits an exact solution is 
worth noting. 

Suppose one is facing n threats and one has only a uniform class of defensive re- 
sources, who's target-elimination probabilities are Pi,P2,-.-,Pn- Further, suppose this 
scenario is made yet simpler, by assuming that Pi - P2-■ • = Pn = P- It is also assumed 
that the target-values are nondecreasing and that one wishes to commit M available de- 
fensive resources, where m,- denotes the number of resources committed to target i, with 

Write 

Pk = P(at least k targets are eliminated). (22) 

THEOREM 1 (DEN BROEDER, ELLISON, EMERLING [22]) The probability Pk, of elimin- 
ating at least k threats, where k £ {l,2,.. .,n}, is at its maximum if the elements of the 
set {"ii}i<,<„ differ at most by unity. 

Proof of Theorem 1 
To prove this Theorem, den Broeder et al, considered the quantity P^ under two different 
allocation policies and found that the difference in the resulting Pk values, showed that 
the maximum Pk is attained by applying the allocation policy stated in Theorem 1. 

Suppose we divide the set of targets {l,2...,n} in to two subsets A and B, where 
this division places two targets in A and the remaining n - 2 targets in B. 
Write 

A={s,t}, s,t e {l,2,...,n} (23) 

B^{l,2,...,n}\A (24) 

Suppose the integer-valued random variables x and y, denote, respectively, the number of 
target destroyed in the sets A and B. 
Write 

z = x + y. (25) 

Then 

Pk = P{u; I z{u;) > k) 

= P{u;\y{u;)>k)P{u\x{u;) = 0) 

+ P{uj I y(u;) >k- l)P(a; | x{u,) = l) ^    ^ 

-f P(a; I y{uj) >k- 2)P(a; | x{uj) = 2). 

Consider a particular assignment {mi, m2,..., m„}, from a total of m resources. Further, 
suppose target s is allocated m, resources and target t is allocated rut resources. Without 
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loss of generality, it is assumed that m, > mt. For the assignment just described, we note 

that 

P{u, I x{oj) = 0) = g""+'"' 

p\u \x{i^) = l)= q^' (1 - g"*') + g'"' (1 - q"") (27) 

F(a; I x{iv) = 2) = (l - g"") (l - g"*'). 

Now we consider a second jissignment, where m, and mt are replaced, respectively, by 
m,-\ and m^ + 1. In a slight abuse of notation, we denote the Pu values resulting from 
these allocations by, respectively, Pk\m„mt and Pfc|(m,-i),(me+i)- Computing the difference 
in these probabilities we get 

P.\m.,r.. - n|(„.,-l).(..+l) = P{^ I 2/(-) > k){q-^-^ - g(™--^)+(-+^)) 

+ Pi'^ \ y{^) >k- l)p(g™' - g""-') 

-P(a;|2,H>A;-2)p(g'"'-g'"'-^) 

= ;j(g""-g'"'-^) X 

(P(a; I y(a>) >k-l)-P{u;\ y{cj) > k - 2)) 

= p(g-'-g'"'-i)F(a;|y(a;) = A:-2). 
(28) 

Recall, it was assumed without loss of generality, that m, > mt. This means g"" -g"*'-^ > 
0,soPk\m„mt-Pk\(m,-i),{Tnt+i) ^ 0- The implicationofthisobservation, is that decreasing 
the difference \mt - m,| does not decrease Pk, but may in fact increase it. So, to ensure 
one computes the required maximum, viz      max     {Pk}, it follows that \m, - mt\ must 

mi,Tn.2 TKn 

he minimised. The consequences of this result prove the Theorem. 

D 

REMARK 5 Although the scenario studied by den Broeder et al is a simple one, who's 
outcome might well have been guessed, it is indeed a useful result. In the Thesis of 
Hoesein [40], this same scenario was considered and an alternative local search algorithm 
was proposed. The allocation algorithm arising from Theorem 1, due to den Broeder et 
al, is known in the literature as the Maximum Marginal Return Algorithm. 

3.1.3    A Linear Allocation Model 

In this section we consider a special case of the problems given by (13) and (10). 

The form of the objective function given at (13) can always be rewritten by noting the 
equality 

Further, suppose one considers an additional constraint, where M — N and no target is 
left unattended, then 

Af 

r(0 = E*M = i'     i = i,2,...,M. (30) 

11 
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It follows that 

M 

11(1 - p^ij^ri-i) ={1- P(.-1))»('-.')  X (1 - P(.-2))='C-.^) X ... (1 - P(.-M))''"-*^) 
i=i 

= 1 - a:i,iP(i,i) - iC(.-,2)P(i,2) a:(.-,Af)P(i.M) (31) 
M 

3=1 

Using the equality at (31), we get, 

N M 

N N M 

JV Af 

t=i       i=i 

iV M 

(32) 

t=i      i=i 

Now the constrained optimisation problem reads: 

N M 

minimise       F = -1 x E^'{E="('.i)PM} (33) 

AT 

subject to        *(j) = J] x^i^j) = 1, (34) 

M 

r(0 = E==(i.i) = i- (35) 

Note, this problem construction implies that M = N. 

REMARK 6 Imposing the two constraints at (34) and (35), avoids the unsettling scenario 
of leaving imminent threats unattended. For example, the problem defined by (13) and 
(34) admits a candidate feasible solution, where all defensive resources may be committed 
to just one target/threat. 

REMARK 7 The optimisation problem defined by (33), (34) and (35), is an instantiation 
of the so called transportation problem. This problem is well known and has received 
considerable attention in the literature. A feature of the transportation problem, is the 
basis matrices have a special structure which can be exploited. The transportation problem 
and other related network flow problems are discussed in [5,25,50,70]. 

REMARK 8 The constrained optimisation problem described above, admits Ml = N\ feas- 
ible solutions. 

12 
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3.1.4    Linear Integer Programming Formulation 

What we wish to do is to cast the problem defined at (33), (34) and (35), in the so 
called standard form for a linear program [50]. To this end, write 

« = («(i,i). • • •. «(JV,i), !C(i,2), • • •, a:(jv,2). • • •. a:(i,Af). • • •. ^NM) ' ^ R^^'^-^^^^'S     (36) 

c = (-t;iP(i,i),. • •, -fiJ'(i,Af), • • ■. -VNP{N,i), • • •. -'"NP{N,M)) ' G R^   ^   '^^,     (37) 

6^(1,1,...,!)' e pAfxl (38) 

A 

1 1 . > > 1 0 0   ... 0 0 0 0     . ..    0' 

0   0 • > • 0 1 1  ... 1 0 0 0     . ..    0 

0   0 ... 0 0 0   ... 0 1 1 ...    . ..  1 

0   0 ■ 0 1 1   . ..   1 

1   0 ... 0 1 0   ... . ..    0 

0   1 0 . . . 0 1  ... . ..    0 

0   0 1 ... 0 0     1 . . . . ..    0 

0   0 

^(M+N)x{MxN) 

(39) 

The constrained optimisation problem now reads: 

Minimise       / = (c, x) 

Subject to        Ax = b, X >0. 

(40) 

(41) 

DEFINITION 1 (UNIMODULAR MATRICES) A matrix A is said to be totally unimodular if 
the determinant of every square matrix formed from it has value -1, 0, or 1. 

(More detail on unimodular matrices can be found in the text [2].) 
It is clear that the matrix A has rank M, further, it is also totally unimodular. In many 
linear integer programming scenarios, one can consider a relaxed form of an objective 
function and thereafter apply standard techniques, such as branch and bound or cutting 
plane methods to compute an integer-valued solution. However, in the scenario described 
here, one need only compute the standard linear programming solution. All vertices on the 
convex polytope for this problem correspond to naturally integer-valued basic solutions. 

PROPOSITION 1 The solution to the linear program given at (40) and (41), is naturally 

an integer-valued solution, taking a value in the binary space B = |0,1}    . 

To prove Proposition 1, we will need the following Lemma. 

LEMMA 2 An integer matrix A — [a(i,j)]i<t<m, wzYfe all a^ij^  G   {-1,0, ,l}, is totally 
l<j<n 

unimodular if: 

13 
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1. no more than two nonzero elements appear in each column, 

2. the rows of A can be partitioned into two subsets Mi and M2 such that: a) if a 
column contains two nonzero elements with the same sign, one element is in each 
of the subsets, b) if a column contains two nonzero elements of opposite signs, both 
elements are in the same subset. 

The following proof, by induction, is now standard and can be found in integer program- 
ming texts, for example [78]. See also [35,36,39,81]. 
Proof of Lemma 2 

One element sub-matrix of i4 has a determinant equal to (-1,0,1). Suppose that the 
Theorem is true for all sub-matrices of A, being of order at least ife - 1. Let fi be any 
sub-matrix of A of order k. If B contains a null vector then detB = 0. If B contains a 
column with only one nonzero element, we expand det B by that column and apply the 
induction hypothesis. Finally, consider the case in which every column of B contains two 
nonzero elements, then from 2(a) and 2(b), for every column j 

E hi.3) =  Yl hi.J)'        3 = l,2,...,k (42) 
t e Ml 16 Af2 

Finally, denote the i-th row of A by 6,-, then the equality (42) gives 

E *••-  E ^' = 0- (43) 
I'eAfi        ieM2 

This clearly implies that det J3 = 0. 

D 

Proof of Proposition 1 
Referring to the Appendix, in particular. Definition 3 and Theorem 2 and from this section 
Lemma 2, we see that an optimal solution to the problem stated at equations 33, (34) and 
(35), if it exists, may be written as 

Here B+ denotes the adjoint of the matrix B. If B is unimodular, then it is also an 
integer-valued, then so is B+, since the adjoint is constructed by the cofactors of the 
matrix S. Further, Lemma 2 ensures that, det(B) G {-1,0, l}. It follows that a;^ is 
purely integer-valued. 

D 

3.2    Asset-based Deterministic Allocation 

Rather than choosing the target values alone to drive an allocation algorithm, one 
can sometimes construct a preferential defence strategy, where the optimisation is, in a 
sense, driven by ranked numeric values assigned to assets one wishes to defend. Naturally 
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asset-based defence applies to scenarios where the elements of a collection of assets are 
differently located, but each under threat of some form. One example might be three 
ships at sea. Suppose one of these ships is a command and control centre and is rated as 
the most-valued asset, then defensive resources are allocated against the collective threat 
to preferentially optimise its survival. A critical element in asset-based defence is the 
availability of situation awareness information. Put simply, we must be able to determine 
which targets are headed for which assets. In some literature this is known as the clustering 
problem, this problem could also be thought of as a data association problem. 

3.2.1    The Standard Model 

The objective functions arising in asset-based defence are somewhat different to those 
arising in target-value based defence. The following notation will be used. 

DEFINITION 2 

K = The number of assets to defend (45) 

N = The number of targets (46) 

M = The number of defensive resource (47) 

Gk = Subset of targets aimed at asset k = 1,2,. ..,K, #(uGfe) = N (48) 

Uk = number of targets aimed at asset k = 1,2,S,.. .K (49) 

Wk = the value of asset k = l,2,...K (50) 

TTj = probability that target i = l,2,...N destroys the asset it's aimed at.       (51) 

P(ij) = probability that resource j eliminates target i. (52) 

As before we define binary decision variables by: 

Allocate Resource j to Target i, .{I ,.., = < (53) 
^'■^^      ' 0    Ignore Taget i. 

The critical factors in asset-based formulations are the estimated sets Gk- These sets 
will rarely be known exactly and so are written G, to stress this uncertainty. In defence 
parlance, the collection {Gi,G2, ■. .,GK} is typically referred to as situation awareness. 
Some immediate questions which arise here, are the accuracy of the sets Gk and more 
importantly, when this information is available. 

The probability that target i survives, despite the allocation against it and destroys the 
target to which it is aimed, is given by 

M 

P(target i is successful) = TTi ]][(1 - Pi,,)**'^. (54) 
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Assuming all target-resource allocations are statistically independent, we see that the 
probability that asset *; survives its attack, is 

M 

P(asset *: survives) =   H (^ " '^i HC^ " P{ij)P'''^ }• (55) 

Our objective function, representing the collective average survival of the asset collection, 
which we seek to meiximise, reads: 

K M 

^=E ^* n {1 - '^i 11(1 - p(,,))»(.-.)} (56) 

In follows that the constrained optimisation we must solve is: 
Compute 

K M 

Subject to 

N 

*(j) = E*'.i = l>        i = l,2,...,M. (58) 

REMARK 9 The problem given by (57) and (58) presents numerous difficulties. Firstly, the 
objective function (56), in its corresponding relaxed form, is neither convex, nor concave. 

Further, suppose one imposes an additional constraint T,- = YrLi ''(i.j) = 1- This con- 
straint does not lead to a simplification as previously in the case of the target-value based 
problem, as the nonlinearities arising from the product terms in (56) are not removed by 
this second constraint. 

REMARK 10 The static asset-based problem admits a special case of the target-value base 
problem. Suppose one is defending a single asset, then it is immediate that the problem 
defined at (57) and (58) reduces to the problem defined at (13) and (14). 

A result similar to that of Theorem 1, can also be computed for the asset-based allocation 
problem. Suppose that the target-elimination probabilities p(ij), do not depend upon the 
index j, that is, the target-elimination probability only depends upon the target to which 
it is aimed. 

Write TTii, for the number of defensive resources allocated to target i. The optimisation 
problem we now wish to solve has the form: 

K 

Compute        max {^ ^^ H {l - 7rfe(l - p^)-')} (59) 

N 

Subject to        ^ m,- = M. (go) 
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In the PhD Thesis of Hosein [40], it was shown that the optimal asset-based defence 
is obtained by setting |m„ - m^| < 1, V a,^ G Gk, for * = 1,2,...,K. This result 
states that the best allocation, for the given assumptions and the situation awareness 
{GI,...,GK}, is to allocate resources subset-wise {ie for each Gk), as uniformly as is 
possible. 

3.3    The Complexity of Static Models 

A perennial and challenging question in optimisation is this, "what makes one al- 
gorithm more difficult than another ?". Surprisingly this question is highly nontrivial, 
however, the Theory of Computation (see [73]) offers some answers. This Theory pro- 
poses, among other things, a classification scheme for ranking the complexity of algorithms, 
measured by computational time requirements (roughly speaking). The standard rank- 
ings are, P (polynomial time), NP (non-determinsitic polynomial time) and finally NPC 
(non-determinsitic polynomial time complete). The order or degree of complexity, from 
least to most, is P, NP then NPC. Given this system of classification, the immediate 
question in our context is this, "how might one compute the complexity of a defensive 
resource allocation algorithm ?". The reason for posing this question is obvious, given the 
time critical nature of defensive resource allocation. 

In the article by Lloyd and Witsenhausen [49], the static target-value based weapon 
target allocation problem was shown to be NPC. Usually the complexity of a given 
algorithm is established by one to two approaches, 1) direct means by first principles, or 
2) showing the given algorithm is equivalent to another algorithm who's classification is 
already known. The second approach was used in [49], by establishing the equivalence 
of the static target-value problem to the so called EXACT 3-COVER problem, which is 
known to be NPC. The consequences of this result are significant for both the online 
and offline scenarios in defensive resource allocation. Since one can show that the static 
target-value based problem is a special case of the static asset-based problem, then it 
would naturally follow, that asset-based allocation problems are most likely to be NPC, 
although this has not been established in the literature. 

4    Example 

For an an example we consider the target-value based static allocation problem. In 
particular we examine the sensitivity of the model given at (10), (34) and (35) against an 
uncertain matrix of elimination probabilities. The precision of elimination probabilities is 
at best speculative, however, without such numbers, one would have essentially very little 
to work with. In this sense, target-elimination probabilities are not unlike nominal model 
transition probabilities in jump Markov systems, that is, one must simply accept these 
quantities as given. 

The scenario we consider, is 5 ranked threats (targets) and 5 defensive resources. The 
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threats values and target-elimination probabilities, are respectively, 

'vi '0.1122] 
V2 0.4433 
V3 = 0.4668 
V4 0.0147 
ys. 0.6641_ 

[P{ij)] = 

'0.7000 
0.2000 
0.5000 

0.4000 
0.1000 

0.1000 
0.7000 
0.2000 

0.2000 
0.2000 

0.2300 

0.2500 
0.7000 
0.3000 
0.3000 

0.5000 
0.1000 
0.1000 
0.7000 
0.4000 

0.4000 
0.5000 
0.2300 

0.1000 
0.7000 

(61) 

The matrix [p^ij)] at (61) it taken as the true matrix of target-elimination probabilities. 
What we wish to do, is replace this matrix with a design matrix, whose elements are 
different to those in [p(,-,j)], then compute the optimal allocation, given the design matrix 
just described. To measure the consequences of using an allocation computed via perturbed 
probabilities, we use the average survivability of the threat, that is, we evaluate (10), using 
the true probability matrix at (61), but for the given allocation computed via the perturbed 
probability matrix. Rather than perturb all elements of the matrix [p(ij)], we choose only 
those elements with a value 0.7. For design matrices, we replace each of these elements with 
an incorrect value, from regularly spaced values in the interval [0.1,0.9]. Figure 1 shows 
the result of this simulation. The sub-figure on the left of Figure 1 is the ascending sorted 
list of objective function values over the entire space of feasible solutions. These plots can 
be very useful, as they give an indication to how difficult the optimisation problem might 
be, particularly for gradient based methods. The sub-figure on the right shows average 
survivability of the collective threat, given allocations computed via incorrect probabilities, 
as described above. The independent variable on the right sub-figure is the design value 
of elimination probability replacing 0.7. 

An immediate conclusion from this study, is there are indeed consequences for uncer- 
tainties in elimination probabilities, even in this simple static allocation problem. 

500    1000   1500  2000  2500  3000 
feasible solution Index 
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Figure 1: Threat survivability with uncertain target-elimination probabilities. 
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5     Conclusion 

5.1    Material Presented 

Bcisic time-independent (static) defensive resource allocation problems have been dis- 
cussed. A brief literature review has been given, identifying major contributions and a 
diversity of approaches to computing solutions. An important special case of the target- 
value allocation problem admitting a transportation problem has been discussed in detail. 
Computer simulations were provided, emphasising the susceptibility of resource allocation 
problems to parameter uncertainties. Technical details have been kept to a minimum in 
this report, with more emphasis placed upon the character, complexity and importance of 
defensive resource allocation. 

5.2    Customer Relevance 

The customer (ADF) relevance of defensive resource allocation research is immediate 
and needs little justification, however, some distinctions should be stressed. Where defens- 
ive resources means weapons, or weapons systems, one must note that such resources are 
prohibitively expensive and complex in their nature. Due to these limitations, research can 
at best offer reliable summary measures of speculated performance, such as probabilities 
or confidence intervals. In this sense, it becomes clear that the ofiline scenario described in 
the introduction is highly relevant. For DSTO to provide meaningful advice to the ADF 
on weapon target allocation, such Eis the summary measures described above, it is crit- 
ical that an offiine simulation capability be developed. Such a capability can potentially 
provide the ADF with a means to: compute measures of defence effectiveness for pre- 
dicted engagement scenarios, compute measures of preparedness and to aid in acquisition 
of defensive resources etc. 

6    Future Research 

Asset-based defensive resource allocation: 
A core problem with the popular and often abused notion of NCW is; given the significant 
technicjil challenges of NCW, how might one construct a measure to demonstrate the 
return/benefit of NCW ? Currently this question remains unanswered. It is important 
to note a subtle distinction here, the issue is not primarily how to show the benefits of 
NCW, rather, how to construct a reliable measure, which then may be used to quantify 
the benefits, or otherwise, of NCW. 

The asset-based weapon target allocation might provide an opportunity to respond to 
this question and to do so in a meaningful and quantitative manner. Recall that the very 
basic notion of NCW is information sharing, or roughly, in defence parlance, situation 
awareness. It is supposed that any single node in a given network will enjoy situation 
awareness information enhanced by all nodes in the network. In asset-based weapon tar- 
get allocation, one must have the sets Gk, described above in section 3.2. Now suppose one 
considers the question of scheduling RADAR. Scheduling RADAR is a stochcistic control 
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problem, where the control variate chooses a sensor according to meeting some object- 
ive. In some cases a scheduling control process might be driven by the minimisation of 
a mean square error in a track estimate. Suppose, however, RADAR is scheduled by a 
control variable, whose objective is to maximise the particular situation awareness needed 
by asset-based weapon target allocation objective functions. This research question has 
been proposed, (by the author), to Prof. Robyn Evans of Melbourne University in Febru- 
ary 2003, and is now being pursued through the Center for Enhancing Network Decision 
of Sensors and Systems (CENDSS). It is hoped that this research might provide a mean- 
ingful and much needed figure of merit for NCW. The intention is to show how enhanced 
situation awareness, provided by a networked defence, might increase the effectiveness of 
defensive resource allocation. 

Soft-kill defensive resource allocation: 

Throughout the defensive resource allocation literature, it is assumed that the target 
elimination probabilities, viz, p?.^-^, correspond to the likelihood of success of the so called 
"Hard Kill" devices, for example missiles. However, "Soft Kill" devices, such as jammers 
and decoys, also have an elimination probability pgj. It is not clear how one might define 

a resource allocation problem including both p^.^^ and pgj, as the impact upon a given 
threat of hard kill and soft kill devices, are not necessarily the same. However, given the 
significant benefits of soft kill devices, i.e. defence effectiveness and cost effectiveness, 
then it is natural to ask how defensive resource allocation models should be developed 
incorporating a general class of resources, that is, both hard and soft kill resources. 

Stochastic integer programming: 

It was shown in this report, that a particular weapon target allocation problem could 
be cast as a linear integer program. More generally, weapon target allocation problems 
are nonlinear, however, integer programming can still be applied to nonlinear constrained 
optimisation problems. Some recent results in stochastic integer programming potentially 
offer a means of solving defensive resource allocation problems, in particular, stochastic 
versions of the standard techniques, see [47,71]. 

Neuro-dynamic programming / Reinforcement learning: 
It is clear from the recent article of Bertsekas et al [6], that neuro-dynamic programming 
potentially offers a promising approach to defensive resource allocation. However, it would 
seem that online applications using NDP are not yet feasible. Nonetheless, this approach 
offers a means to analyse complex problems in the offline scenario. Further, interest and 
funding in NDP is growing rapidly. 

Robustness: 

A common feature of every defensive resource allocation scheme, static, dynamic, target- 
value based, asset-value based, is that parameter values are often assumed known. In 
practice this assumption will never hold. Further, the simulation study given in section 
4 shows that there are significant consequences arising from parameter uncertainty. To 
address this problem, one must essentially develop a new model, (objective function), 
explicitly including a model for risk or uncertainty.   Some recent results ( [61]), have 
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considered incorporating notions of risk arising in quantitative finance into weapon target 
allocation problems. Clearly defensive resource allocation is a decision making problem 
with a significant component of risk, yet this risk is currently ignored by all standard 
models. There is, therefore, considerable scope to include explicit modelling of risk in 
defensive resource allocation. 

In the last ten years quantitative finance has experienced a profound rate of growth. In 
particular, the rich intersection between quantitative finance and modern Electrical Engin- 
eering is being pursued with intensity. Notions of risk are central to quantitative finance. 
Further, despite a common misconception that quantitative finance strives primarily to 
predict the behavior of markets, in general, its real objective is to quantify and manage 
risk. It's now clear that there exists a substantial potential to adapt extant finance-based 
models for risk, such as conditional value at risk (CVAR), into the problems of defensive 
resource allocation. Appreciating the intrinsic sensitivity of integer programming, upon 
which many weapon target allocation algorithms are based, one should immediately realise 
that quantitative modelling of risk in defensive resource allocation is a vital area of future 

research. 

Parallel processing: 
Finally, it is clear, that even the 'best' algorithms for defensive resource allocation, (con- 
sidered in an offline scenario), may still require considerable, if not prohibitive computer 
processing time. This is not surprising, given the complexity characteristics briefly dis- 
cussed in section 5. It was suggested by Hosein (1989) [40], that algorithms for weapon 
target allocation are amenable to parallel processing and therefore should be considered. 
This observation remains just as relevant today [7,11]. 
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Appendix A    Linear Programming 

Consider the system of linear equations 

Ax = h. (Al) 

Here x G R'^'^S h 6 B'"'^^ and A G R"*^". Assume A is of rank m. We compose a matrix 
B from the m linearly independent columns of A. Since B is nonsingular the system of 
equations 

BxB = b (A2) 

has a unique solution. 
Write 

aT^K,0')'GR"'^\ (A3) 

The X defined above motivates the following definition. 

DEFINITION 3 (BASIC SOLUTIONS) Consider the system of equations at (Al), with rank 
equal to m and let B G R™**"*, be any sub-matrix composed by m columns of A. If all 
n — m components of x not associated with columns of B are assigned the value zero, the 
solution of the resulting system of equations is said to be a basic solution to (Al) with 
respect to the basis B 

The following Theorem is standard, see [50], although its importance cannot go under- 
stated, as it essentially forms the foundation of the Simplex algorithm. It is included here 
for completeness. 

THEOREM 2 (FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING) Consider a 
given linear program in standard form: 

minimise        (c,«), (A4) 

subject to,        Ax = b, x >0. (A5) 

Here the matrix A G R""^" is of rank m. For the stated linear program, the following two 
conditions hold: 

1. If there is a feasible solution, then there is a basic feasible solution. 

2. If there is an optimal feasible solution, then there is an optimal basic feasible solution. 

Proof of Theorem 2 
1. Suppose X = {xi,X2, ■ ■ -tXn) is a feasible solution, then 

b = Xiai + X2a2-\ InOn- (A6) 
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Here a,- denotes the i-th column of the matrix A. Given the constraint x > 0, some of the 
X components in this solution might be zero. Assume that p of these components are not 
zero and for convenience, write 

h = xiai + 1202 H XpUp. (A7) 

It is not clear whether the set {oi,..., Op}, is linearly independent, or linearly dependent. 
This uncertainty admits two czises. 

Case 1 (Linear Independence): Clearly p < m. If p = m, then the solution is basic and 
we are done. Suppose p < m. Since A has rank m, then m-p vectors can be found from 
the remaining set of m linearly independent column vectors. Setting the value zero to the 
corresponding m-p variables leads to a basic feasible solution. 
Case 2 (Linear Dependence): If the column vectors {oi,..., Op} are linearly dependent, 
then there exists a nontrivial linear combination of these vectors that is the zero vector, 
that is 

0 = ffioi + ^202 + • • • VpOp, (A8) 

for constants yi,..., J/p, at least one of which may be assumed to be positive. Now multiply 
the equation above by the positive scalar e, then subtract the result from (A7), to form 

b={xi- €yi)ai + {xi - ey2)a2 + ■••(«!- €yp)ap. (A9) 

Equation (A9) will hold for each e. The set of components {(si - eyi),... (ij - eyp)] cor- 
responds to a solution of the linear equalities Ax = b, however, note that weak inequality 
a^t - eyi > 0 may be violated. Write 

y= {yi,y2,---,yp,o,...,o)' e E"''^ (Aio) 

For each e, the vector x - ey satisfies Ax = 6. Suppose now that we increase e from zero, 
in doing so the components of (A9) will increase, decrease, or remain constant, depending 
upon yi, being respectively, negative, positive, or zero. Recall that we assumed at least one 
yi is positive, so there exists a component which will decrease as c is increased. Consider 
increasing e to a magnitude at which one or more components of (A9) become zero. 
Write 

e* = mm{xi/yi \ yi > O}. (AH) 

The solution x - e*y is a feasible solution and has at most p -1 positive variables. Clearly 
we can keep repeating this process, choosing further e* as before and in so doing, arrive 
at a feasible solution formed by only linearly independent column vector of A, then we 
consider Case 1. 

2. To prove the second claim we can begin by proceeding as before, however, we must 
establish that x - ey is the optimal solution. If we suppose x = (zi,a;2,.. .,z„)' is an 
optimal solution and that there are exactly p < n positive components in this vector, then 
we can work through the two cases of linear independence and linear dependence as before. 
This is omitted. 

Now, recall that our objective, is to minimise (c,«), subject to Ax > 0.   For the 
feasible solution a; - ey, we note that 

(c, ar - ey) = (c, aj) - e(c, y>. (A12) 
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For an appropriate e, x — ey is a feasible solution, so we must conclude that the vector 
y is orthogonal to the vector c, that is (c, y) = 0. Suppose this were not the case. If 
(c, y) ^ 0, then we could choose an even smaller e, making (A12) yet smaller, while 
retaining feasibility. This outcome would violate the assumption that x is optimal, so it 
must be true that (c, y) = 0. It follows that claim 2 in Theorem 2 is true. 

D 
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